Logo Texture Analysis

EBSD und BKD    

  goto EBSD und BKD - Zusammenfassung  goto Fast EBSD  goto EBSD und EDS  goto EBSD Bildkontrast  goto Pattern Quality  goto Links und Downloads  goto Orientierungsstereologie  


EBSD-Grundlagen

 

BKP and setupDie Kikuchi-Beugung in Rückstreuung von massiven Kristall- oberflächen ist eine sehr alte Technik [1], sie hat aber erst seit wenigen Jahren unter der Bezeichnung EBSD (Electron BackScatter Diffraction) eine breite Anwendung in den Werkstoff- und Erdwissenschaften gefunden [2, 3]. Wenn ein Elektronenstrahl von einigen tausend Elektronenvolt Energie auf einen Kristall trifft, entsteht ein Beugungsdiagramm (a).

Typisch für Kikuchi-Diagramme sind schmale Bänder mit einer Winkelbreite des doppelten Braggwinkels (b). Man kann sie sich anschaulich als Schnittlinien der Kosselkegel mit der Registrierebene vorstellen. Die Netzebenen würden in diesem Bild bis zum Leuchtschirm reichen und die Mittellinien der Bänder bilden. Die Bänder schneiden sich in sternförmigen Zonenachsen. Wegen der starken Vorwärtsstreuung liegt das Intensitätsmaximum nahe dem Maximum im Fall von lichtoptischer Reflexion. Um eine ausreichend hohe Intensität zu erhalten, wird im Raster-Elektronenmikroskop (REM) die Probenoberfläche um etwa 60° bis 70° aus der Horizontalen gekippt und das Beugungsdiagramm mit einem Durchsicht-Leuchtschirm registriert. Dahinter steht eine hochempfindliche Digital-Videokamera. Das Beugungsdiagramm umfasst einen Winkelbereich von bis zu etwa ±60°, so dass meist mehrere niedrig indizierte Zonenachsen registriert werden.

Auf meiner Webseite www.ebsd.info finden Sie auf Englisch eine umfangreiche Einführung in das Arbeitsgebiet.

 

Laserschwei├čnaht in Al-Blech

Nachdem mehrere Bänder im Diagramm mittels Radon- bzw. Hough- Transformation [3] lokalisiert wurden, erfolgt die Berechnung der Kristallorientierung durch Vergleich der Diagrammgeometrie mit der Position von Netzebenen in der Elementarzelle des Kristalls. Das Rechenprogramm versucht in einem mehrphasigen Material, das Diagramm mit allen vermuteten Kristallgittern zu indizieren und nimmt diejenige Lösung als wahr an, für die das rückgerechnete (theoretische) Diagramm am besten mit dem gemess enen Diagramm übereinstimmt ("Phasendiskriminierung").

Aus der Indizierung folgt die Kristallorientierung bezüglich des probenfesten Koordinatensystems in Form von Eulerwinkeln oder Miller-Indizes. In weiteren Programmen werden die gemessenen Orientierungsdaten analysiert. Die Verteilung der Kornorientierung im gemessenen Probenbereich wird in Gefügebildern veranschaulicht, indem den Orientierungen in den Messorten Farben zugeordnet werden, die spezifisch für die Miller-Indizes, die Eulerwinkel oder die Rodrigues-Vektoren sind ("Miller Maps" = "Inverse Polefigure Maps", "Euler-Maps", "Rodrigues-Maps") [4].

Die quantitative Texturanalyse erfolgt durch Berechnen der Orientierungs-Dichte-Funktion (ODF), Missorientierungs- und Orientierungs- Korrelationsfunktionen (MODF) sowie Konstruktion von Polfiguren. Die Orientierungsstereologie zielt ab auf die Verbindung von Textur und Quantitativer Materialographie, zum Beispiel die Ermittlung von Korn- und Korngrenzen-Statistiken und von lokalen anisotropen Materialeigenschaften. Insgesamt ermöglicht EBSD eine umfangreiche quantitative Gefügecharakterisierung über den gesamten gemessenen Bereich mit einer hohen Ortsauflösung bis herab auf wenige 10 nm und einer Orientierungsgenauigkeit von typischerweise 0,5° [5].

 

RGB KodierungDie Farbcodierung der hkl- und der uvw- Richtungsverteilungsbilder ("Miller Maps") wird üblicherweise durch Überlagerung des RGB-Farbdreiecks mit dem Standard-Dreieck des Kristallgitters definiert [4]. Wegen der starken Verzerrung infolge der stereographischen Projektion ist die Identifikation einer kristallographischen Richtung durch Vergleich der Farbe eines Korns mit der Farbe im Standarddreieck nicht immer einfach. Werden dagegen dieauf Summe = 1 normierten Indizes [100], [010] und [001] - wie die Elemente einer ternären Legierung in Phasendiagrammen - als Eckpunkte in ein gleichseitiges Dreieck eingetragen und die RGB-Farben mit baryzentrischer Gewichtung gemischt, dann ergibt sich ein einfacher linearer Zusammenhang zwischen den Orten der RGB-Mischfarben und den Orten der Flächenindizes [hkl] bzw. den Richtungsindizes [uvw]. Für die Farbkodierung in Miller-Maps wird im Fall kubischer Symmetrie das intensiv dargestellte Farbdreieck 100-110-111 verwendet, das alle kristallographisch äquivalente Richtungen enthält.

 

Ebenso kann man die Indizes [hkl] bzw. [uvw] von probenfesten Referenzrichtungen - bei Blechen wählt man in der Regel die Blechebenennormale und die Walzrichtung - auf Summe = 1 normieren und diese Werte für alle gemessenen Kristallite in ein ternäres Dreieck mit baryzentrischem Koordinatensystem eintragen [6]. Man erhält so anstelle von inversen Polfiguren eine neue Darstellung der statistischen Richtungsverteilungen bezüglich der probenfesten Referenzrichtungen. Vorteile dieser Darstellungsart sind: Sie ist nicht verzerrt; die Indizes lassen sich mühelos ablesen; Indizes der Netzebenen mit gemeinsamer Zonenachse bzw. Indizes der Zonenachsen mit gemeinsamer Netzebene liegen auf Geraden. Aus historischen Gründen hat sich jedoch die Darstellung von ternären Millerplots noch nicht gegen die Darstellung von inversen Polfiguren mit der verzerrenden stereographischen oder Lambert-Projektion des kristallographischen Standard-Dreiecks durchgesetzt.

___________
[1]    Download S. Nishikawa, S. Kikuchi: Diffraction of cathode rays by calcite. Nature 1928, 122, 726
[2]    A.J. Schwartz, M. Kumar, B.L. Adams (eds.): Elec tron Backscatter Diffraction in Materials Science. Kluwer Academic/Plenum Press, New York, 2000.
[3]    A.J. Schwartz, M. Kumar, B.L. Adams, D.P. F ield (eds.): Electron Backscatter Diffraction in Materials Science. Springer Science and Business Media, New York, 2009.
[4]     Download D. Gerth und R.A. Schwar zer: Graphical representation of grain and hillock orientations in annealed Al-1%Si films. Textures and Microstructures 21 (1993) 177-193.
[5]    Download   R.A. Schwarzer, D.P. Fi eld, B.L. Adams, M. Kumar, A J. Schwartz: Present state of electron backscatter diffraction and prospective developments. In: Adam J. Schwartz, M. Kumar, Brent L. Adams, David P. Field (eds.): Electron Backscatter Diffraction in Materials Science, 2nd edition, Springer Science+Business Media, 2009, Chapter 1, p. 1-20.
[6]    W.G. Fricke Jr.: Zone Axes in the Miller I ndex Space. Mat. Sci. Eng. 84 (1986) 205-208.


goto EBSD und BKD - Zusammenfassung  goto Fast EBSD  goto EBSD und EDS  goto EBSD Bildkontrast  goto Pattern Quality  goto Links und Downloads  goto Orientierungsstereologie